

PRESENTATION 3 – HYDROPOWER COLLEGIATE COMPETITION

November 7th, 2023

Riley Frisell

Evan Higgins

Trevor Senior

PROJECT DESCRIPTION

 Problem Statement: Optimize the conversion of Granite Reef Diversion Dam into a small-scale hydropower facility.

Upcoming Challenges

- Assessing environmental and regulatory considerations
- Interconnection with the power grid
- Ensure long-term viability
- Optimizing turbine design for efficient energy extraction

DESIGN DESCRIPTION

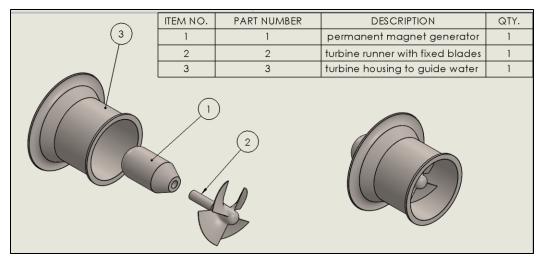


Figure 1: Hydropower turbine assembly

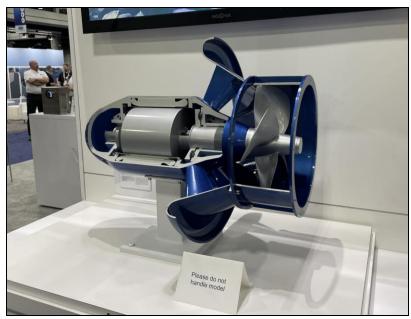


Figure 2: Voith StreamDiver model from Clean Currents Conference 2023

F23toSp24_06 Trevor Senior

DESIGN DESCRIPTION

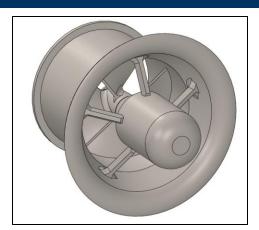


Figure 3: Isometric view of hydropower turbine water inlet

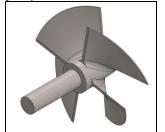


Figure 4: Fixed runner

Hydropower turbine model

- Turbine housing with guide vanes
- Fixed blade runner
- Minimum head 6 ft
- Fish safe blades
- Stainless steel

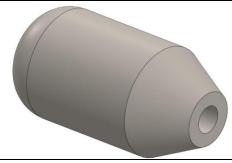
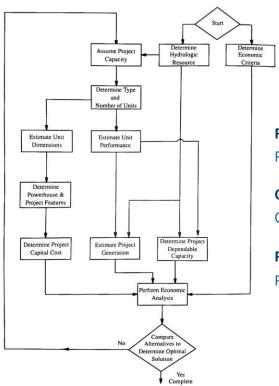


Figure 5: Isometric view of PMG

Permanent Magnet Generator

- Converts
 mechanical rotation
 to electricity
- Highly reliable
- No current supply required
- Lifespan greater
 than 20 years


F23toSp24_06 Trevor Senior

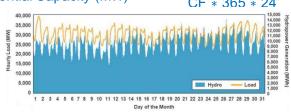
DESIGN REQUIREMENTS – UPDATED QFD

1 2 3 4 5 6	Mitigated Environmental Impacts Financial Feasibility Site Interconnectivity Co-Development Opportunities Energy Output Affected Population			+ - +	++ ++ + + Tech	+ ++ ++ nical Re	+ ++	++ nents		Legend A Red Rock, IL B Lake Livingston, TX C Willow Island, WV Customer Opinion Survey			, TX VV	
	Customer N eeds	Customer Weights	Weight %	Mitigated Environmental Impacts	Financial Feasibility	Site Interconnectivity	Co-Development Opportunities	Energy Output	Affected Population	1 Poor	5	3 Acceptable	4	5 Excellent
1	Environmental Impact Mitigation	10	21.28	9	6	3	6					В	С	A
2	Project Expenditures	9	19.15	6	9	6	6	6	3		Α	В		С
3	Accessibility	8	17.02	3	6	9	3	6	3		Α	В		С
4	Co-Development Proposal	7	14.89	6	6	6	9		6			С		AB
5	Energy Production	6	12.77		6	3		9	6	Α		В	С	
6	Community Engagement	5	10.64		3	3	6	6	9					С
		ical Require		%	2023	miles	#	MW	#					
		l Requireme	ŭ	1	+	4	^	(1-10)	1					
		Technical I	_	447	600	491	491	396	370					
	Relative	Technical I	mportance	3	1	2	4	2	5					

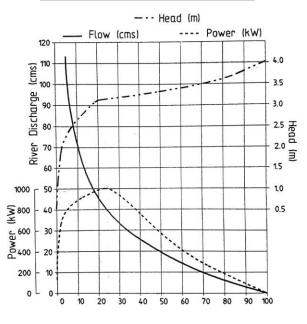
F23toSp24_06 Riley Frisell

ENGINEERING CALCULATIONS – CAPACITY

Input Variables							
Average Flow (Q)	1966 cfs						
Gross Head (ΔH)	20.3 ft						
Generating Efficiency (η)	0.85 (unitless)						
Generation Period (T)	8760 hours						
Annual Generation	25,184 MWh						
Installed Max Capacity	2.874858 MW						

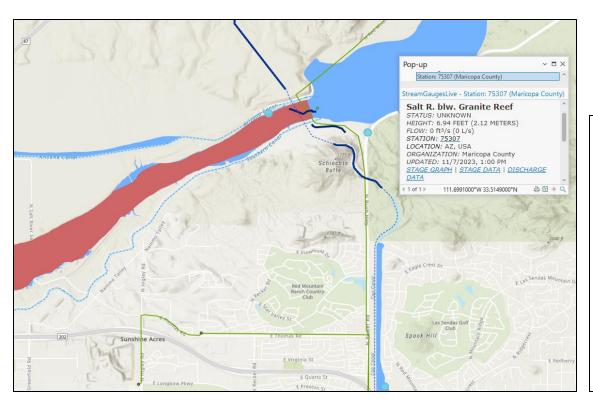

Potential Hydropower Generation (MWh)
Potential Generation (MWh) = $\frac{Q * \Delta H * \eta * T}{11,800}$

Capacity Factor

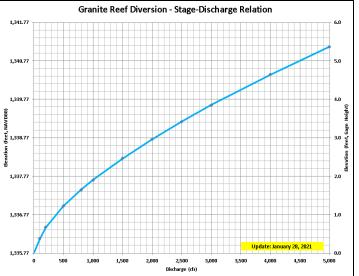

CF = Annual Generation
Installed Capacity

Potential Capacity (MW)

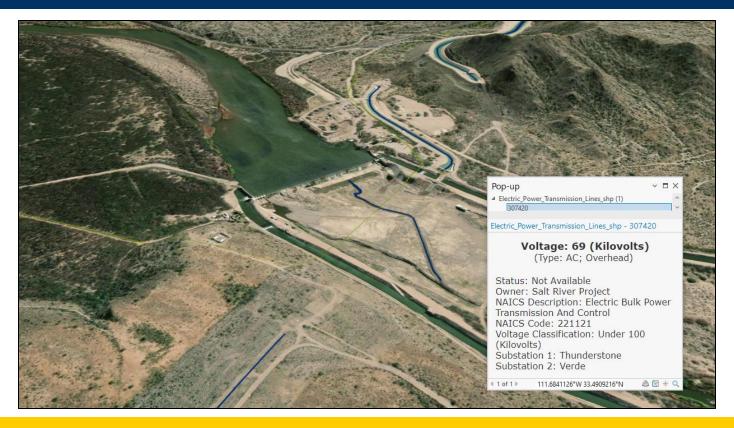
Potential Generation (MWh) Potential Capacity (MW) = CF * 365 * 24



Solutions							
Potential Generation	25,184	MWh					
Capacity Factor (C _f)	C _f) 1.0000 (unit						
Potential Capacity	2.87	MW					



F23toSp24 06 Riley Frisell


ENGINEERING MODEL – ARCGIS PRO

- Red Area: Floodway
- Blue Area: 100-Year Flood Zone
- Blue Dots: Stream Gages

ENGINEERING MODEL – ARCGIS PRO

DESIGN VALIDATION – FMEA

Product Name: Granite Reef Dam System Name: Hydropower turbine Subsystem Name: PMG Component Name: Fixed runner		Develop	elopment Team: HCC24			Page No 1 of 1 FMEA Number: Date: 11/03/2023			
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurance (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action
1: Generator Generate electricity	Shaft in the generator stops rotating, or generator fails	Electricity production would stop	7	Debris or sediment clogging the runner	3	Loading test and efficiency test	2	42	Trash rack to filter out large aquatic animals and debris
2: Fixed runner Capture KE from water	Cavitation	Runner would become less efficient and possibly crack	5	Formation of vapor bubbles round runner bursting, causing pressure changes	4	Material strength and runner vibrations test	2	40	High strenght blade, forward edge blade profile, improve distribution along pressure angle of blade
3: Unit casing Guide water to runner	Leaks or cracks	The casing would suffer from errosion, water leaking around the tube, electrical failure	6	Debris, too high of flow moving abrasive sediments	3	Pressure and flow capacity test. Corrosion resistance inspection	2	36	Strong materials, aerodyncamic design for flow to minimize water force
4: Dam structure Supports the pressure from reservoir	Dam failure, excessive flooding	Downstream flooding, wildlife impacts, and South canal and Arizona canal water supply would stop.	10	High flow water moving abrasive sediments or debris over the dam or thruough the turbine	1	Excessive water assement and test	2	20	Regular inspection, every 3-5 years. Assesment into dam structure before making any alterations

Our completion's optional build and test challenge is focused on a facility conceptual design. Testing and resources required to be determined. [1],[2]

F23toSp24_06 Trevor Senior

PROJECT BUDGET

ltem	Category	Description	Unit Cost	Quantity	Cost
Bill of Materials	Materials	*Refer to BOM	369.10	1	369.10
Shuttle Ticket	Travel - IA	Round trip, FLG/PHX [04/29, 05/02]	65.00 /person	7	455.00
Plane Ticket	Travel - IA	Round trip, PHX/DSM [04/29, 05/02]	438.00 /person	7	3066.00
Rental Car	Travel - IA	7 passenger vehicle [04/29 - 05/02]	99.00 /day	3	385.00
Hotel	Travel - IA	3 rooms, 3 nights [04/29 - 05/02]	89.00 /room/night	9	807.00
			Estin	nated Cost	5082.10

ltem	Category	Description	Total		
		\$5,000 - Application Approval			
NDEL Consortition Funding	Franks.	\$5,000 - Mid-year Submission	20000 00		
NREL Competition Funding	Funds	\$5,000 - Final Submission	20000.00		
		*\$5,000 - Optional Build Submission			
Self-Raised Funds	Funds	EPIC Funding for Clean Currents	3135.71		
		Estimated Funds	23135.71		

CLEAN CURRENTS - OHIO [10/09-10/12]

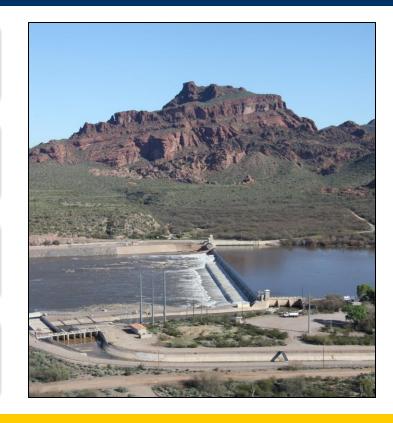
ltem	Cost	SUMMARY	
Flights	1856	Estimated Funds	23135
Hotel	1022.11	Estimated Costs	8217
Shuttles	257.6	Remaing Budget	14917.
Total Cost	3135.71		

F23toSp24_06 Riley Frisell

SCHEDULE

CONCLUSION

With dam selected, we use mapping tools to guide our site assessment


Moving forward with CAD model to help with preliminary design

Next Steps: Contact SRP and HDR to gather site-specific data

Goals: Complete HW04 early to move forward with competition challenges

THANK YOU!

NORTHERN ARIZONA UNIVERSITY.

References

[1] "Hydropower collegiate competition (HCC)," American Made Challenges, https://americanmadechallenges.org/challenges/hydropower-collegiate-competition (accessed Nov.

9, 2023).

[2] U. Dorji et al., "Hydro Turbine Failure Mechanisms: An overview," Engineering Failure Analysis, https://www.sciencedirect.com/science/article/abs/pii/S1350630714001277 (accessed Nov. 9, 2023).